Morphing Planar Graphs Drawings Efficiently

نویسندگان

  • Patrizio Angelini
  • Fabrizio Frati
  • Maurizio Patrignani
  • Vincenzo Roselli
چکیده

A morph between two straight-line planar drawings of the same graph is a continuous transformation from the first to the second drawing such that planarity is preserved at all times. Each step of the morph moves each vertex at constant speed along a straight line. Although the existence of a morph between any two drawings was established several decades ago, only recently it has been proved that a polynomial number of steps suffices to morph any two planar straight-line drawings. Namely, at SODA 2013, Alamdari et al. [1] proved that any two planar straight-line drawings of a planar graph can be morphed in O(n) steps, while O(n) steps suffice if we restrict to maximal planar graphs. In this paper, we improve upon such results, by showing an algorithm to morph any two planar straight-line drawings of a planar graph in O(n) steps; further, we show that a morphing with O(n) steps exists between any two planar straight-line drawings of a series-parallel graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intersection-Free Morphing of Planar Graphs

Given two different drawings of a planar graph we consider the problem of morphing one drawing into the other. We designed and implemented an algorithm for intersection-free morphing of planar graphs. Our algorithm uses a combination of different techniques to achieve smooth transformations: rigid morphing, compatible triangulations, as well as morphing based on interpolation of the convex repr...

متن کامل

Morphing Planar Graphs in Spherical Space

We consider the problem of intersection-free planar graph morphing, and in particular, a generalization from Euclidean space to spherical space. We show that there exists a continuous and intersectionfree morph between two sphere drawings of a maximally planar graph, provided that both sphere drawings have convex inscribed polytopes, where sphere drawings are the spherical equivalent of plane d...

متن کامل

Morphing Planar Graph Drawings

The study of planar graphs dates back to Euler and the earliest days of graph theory. Centuries later came the proofs by Wagner, Fáry and Stein that every planar graph can be drawn with straight line segments for the edges, and the algorithm by Tutte for constructing such straight-line drawings given in his 1963 paper, “How to Draw a Graph”. With more recent attention to complexity issues, this...

متن کامل

Morphing Planar Graph Drawings Optimally

We provide an algorithm for computing a planar morph between any two planar straight-line drawings of any n-vertex plane graph in O(n) morphing steps, thus improving upon the previously best known O(n) upper bound. Further, we prove that our algorithm is optimal, that is, we show that there exist two planar straight-line drawings Γs and Γt of an n-vertex plane graph G such that any planar morph...

متن کامل

Morphing Planar Graph Drawings with a Polynomial Number of Steps

In 1944, Cairns proved the following theorem: given any two straight-line planar drawings of a triangulation with the same outer face, there exists a morph (i.e., a continuous transformation) between the two drawings so that the drawing remains straight-line planar at all times. Cairns’s original proof required exponentially many morphing steps. We prove that there is a morph that consists ofO(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1308.4291  شماره 

صفحات  -

تاریخ انتشار 2013